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< The problem of measuring surface parameters of tribological importance such as peak
> P it paras TR0 08 p pea
olm curvature has been considerably simplified. Using discrete random process analysis
o H tribological parameters of a wide range of surfaces can now be expressed and measured
- 5 in terms of just two points on the measured autocorrelation function and the r.m.s.
T value of the surface. In addition, the contribution each ‘scale of size’ of asperity makes
= 8 to an overall parameter can be assessed quantitatively. Many new expressions relating

tribological parameters to the autocorrelation function have been derived using a
limiting procedure which produces results entirely consistent with equivalent con-
tinuous theory. Using this theory it is now possible to predict ‘gap’ parameters bet-
ween two surfaces in contact in terms of simple additive parameters of each surface.

Finally a new statistical model of the surface has been developed which encompasses
many types of engineering surface.

§ Present address: Department of Engineering, University of Warwick.
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268 D.J.WHITEHOUSE AND M. J. PHILLIPS

1. INTRODUCTION

It is now a well established fact that surfaces are important in tribology and in other functional
situations (Bowden & Tabor 1954). The realization of this has meant that more and more re-
searchers are measuring surfaces and, furthermore, they are looking at many new parameters of
the surface geometry. This is an inevitable development brought about by the growing need to
understand more fully the complex interaction between surfaces during experiments.

One of the most important consequences of this interest has been the dramatic increase in the
number of investigators using digital methods to investigate surfaces (Greenwood & Williamson
1977). This in itself is good for the subject because it enables the full power and versatility of
digital techniques to be used in surface assessment. It has, however, a drawback, because many of
the complexities of signal analysis are now brought into the open. When using conventional
analogue equipment such as filters, recorders and similar devices, problems associated with
frequency responses, noise levels etc. are hidden from the operator. They are still present but
plausible answers will continue to emerge because the designer of the equipment has usually set
out to match up the various units making up the system. Unfortunately there is no intrinsic
matching up procedure in digital methods unless a great deal of digital expertise is available and
the instrument understood fully. The researcher usually meets the digital problems of sampling,
quantization and numerical analysis head-on and all too often he is not even fully aware of them.
With the ever decreasing cost of computing the use, and misuse, of computers in this field will
obviously grow. Today it is unsafe for one researcher to compare results of surface parameters
obtained by digital methods with another even for the same surface!

There are a number of reasons why it is so difficult for a researcher to make good use of digital
data from a surface. One of these is concerned with the analysis. When building up a theory from
which to predict the functional behaviour of his experiment he often finds difficulty in finding the
relevant surface parameters in the literature and of knowing how what is in the literature relates
to his measurements. This is mainly due to the fact that the complex analysis of waveforms has
been carried out for the most part by communication engineers (Rice 1944). Naturally they have
placed most emphasis on the temporal properties of waveforms such as time series analysis and not
on some of the more exotic properties of maxima and minima such as curvatures which are so
important in tribology. Neither hasit been possible to identify the properties of surfaces which can
be ascribed to the different scales of size of asperity making up the surface — another issue of vital
importance in tribology and contact phenomena (Archard 1957).

Recently there have been some attempts to rectify this situation. In the first instance some
useful surface parameters have been evaluated using statistical methods. Greenwood & William-
son (1966) for example placed a lot of emphasis on the distribution of the peak heights in their
models for plastic and elastic contact. Even more recently a major breakthrough has been the
introduction of random process analysis. Peklenik (1967-68) used the autocorrelation function
as a basis for classifying surfaces whereas Whitehouse & Archard (1970) and Nayak (1971, 1973)
expressed tribological parameters in terms of the autocorrelation function, the Nayak work
being based on the pioneering two-dimensional work of Longuet-Higgins (1957). Unfortu-
nately use of random process analysis by itself only gives part of the story; it only gives the theo-
retical relationships between surface parameters and the autocorrelation function it does not show
the researcher how the measured parameters relate to the measured autocorrelation function.
Whitehouse & Archard (1970) were the first to tackle the overall problem by using discrete
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DISCRETE PROPERTIES OF RANDOM SURFACES 269

random process analysis in which the profile was considered to be made up of digital or discrete
ordinates. They then developed expressions for some of the important parameters such as peak
curvature in terms of these discrete ordinates and the correlation function. For instance in their
analysis a peak was defined only when the central ordinate of a set of three was the highest.
Intrinsically this method of approach is attractive because it gives the foundation for under-
standing digital results obtained from surfaces; it also provides a very simple way of exploring how
the scale of size of asperity changes its properties (this is done by merely changing the interval
between samples). Neither of these problems had been investigated previously.

Although this early work by Whitehouse & Archard (1970) was a useful starting point in
bridging the gap between theory and practice it was somewhat restricted. Only surfaces having a
normal (gaussian) distribution of ordinate heights and an exponential autocorrelation were
considered. Although the former constraint is not serious the latter can be; it confines the analysis
to only one type of surface and can cause some theoretical difficulties because of the properties of
exponential functions. However, ease of manipulation makes this model attractive to use and
later Whitehouse (1978) investigated more of the problems of the digital analysis of surfaces. He
was able to show that of the three digital problem areas, the distance between data points (here
called ordinates), the quantization in the measurement of the height of the ordinate, and the
numerical model, it was the distance or interval between ordinates which posed most of
the problems. He was also able to show that the three-point analysis method of determining
peaks and peak properties was sufficiently accurate for most practical purposes. What is badly
needed it to extend this early work and to generalize it so that many different types of surface
can be included in order that the nature and extent of the problem of describing and measuring
surfaces in a discrete form can be carried out properly. One of the principal aims of this paper is to
help satisfy this need and if possible simplify the measurement of such difficult parameters as the
variance in peak curvature and other similar parameters.

In this paper a nominally gaussian (normal) distribution of ordinate heights taken from a
profile of the surface will be assumed: all practical examples used in the paper adhere to this
condition. Because of the comments above only the effects of sampling interval will be considered
and the numerical model will be restricted to the three-point model. In §2 general expressions
are developed relating tribological parameters of a surface profile to two points in the auto-
correlation function. Many significant new parameters are evaluated in this way using discrete
random process analysis.

The theoretical validity of these expressions is proved in the first part of §3 by taking the sample
interval to zero and showing that the formulae derived converge to those of continuous random
process theory. Armed with this knowledge continuous expressions are derived, using this limiting
procedure, for a number of potentially important parameters not hitherto available in the litera-
ture. An example of this is the correlation coefficient between peak height and curvature. Others
are the standard deviation of the peak height and curvature distributions. The remainder of
§3 is devoted to finding a statistical model of a surface which is suitably versatile to be able to be
used for many types of surface, and yet at the same time remain theoretically sound. This model
was needed to explore the relationship between sampling interval and the tribological parameters
reported later in the paper.

The first part of §4 is devoted to showing the results of some tests on real surfaces in order to
demonstrate the practical validity of the relationships developed in § 2. This was carried out for a

number of different types of surface. During this subsection the practical procedure for using and
23-2
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270 D.J.WHITEHOUSE AND M. J. PHILLIPS

interpreting the formulae derived in the early part of the paper is given. Section 4 concludes with
the results obtained by using the statistical model developed in §3 to explore the variation in the
surface parameters as the sampling interval is changed. Again the interpretation of results is
explained.

Section 5 consists of a discussion of the paper and its implications.

2. ANALYSIS OF DISCRETE PARAMETERS OF A GENERALIZED RANDOM SURFACE

In order to investigate the three-point analysis of a random surface, it is necessary to apply
suitable constraints to the joint distribution of three equally spaced ordinates y_,, y, and y,, taken
from a profile of the surface. An ordinate is a discrete measurement of the profile. It is assumed,
without loss of generality, that the ordinates have a probability distribution with zero mean and
unit variance. The joint probability distribution of the three ordinates will be assumed to be a
trivariate normal (gaussian) distribution. The variance-covariance matrix ¥ will be given by

L p1 ps
V=|pp 1 p), (2.1)
Pz P11

where p, is the correlation coefficient between adjacent ordinates spaced a distance /4 apart and
P is the correlation coefficient between ordinates spaced a distance 24 apart. It is necessary for
this matrix V to be positive definite and this gives the inequality

2p2—1 < p, < 1.

A multivariate normal distribution of a vector Y will be denoted by Y ~ N[pu, V] where uis the
vector of means and V is the variance-covariance matrix.

2.1. Distributions derived from linear combinations of ordinates

Some useful characteristics of a surface profile can be expressed simply in linear combinations
of the ordinates. Because of the linearity normal distributions will be obtained. Two such charac-
teristics are the slope and curvature of the profile, which will be denoted by m and ¢ respectively.
The curvature is taken as the second differential of the surface profile, as the surface slopes are
generally small. If

Sa=Yo=Y - - : (2.2)
and $1=Yo— U1 (2.3)
then the slope is given by m = (s_y—s,)/2h (2.4)
and the curvature is given by ¢ = (s_y+s8)/h% (2.5)
The joint distribution of §_,, §; and ¥, is
0 2-2p, 1-2p,+py 1—p,
(S_1, 8, X)) ~ N[(O), (1—2p1+p2 2—2p, 1—p1)]. (2.6)
0 1—p, 1—p; 1
Hence the joint distribution of the slope M and the central ordinate ¥ is
[ (15 ).
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and of the curvature C and the central ordinate ¥, is

e 0\ ((6—8py+2p,) /0t 2(1‘“/71)/}’2)
ex~ (0 (™ ' (2.8
The marginal distributions are normal. So

Y, ~ N[0,1], (2.9)
M ~ N[0, (1= py) /2] (2.10)
and C ~ N0, (6 —8p, +2p,) /1] (2.11)

The conditional distributions are also normal, though M and Y, are independent random
variables. The distribution of the profile height ¥, for a given curvature C ( = ¢) is
L—py) kP 1-2pi+p
YC::c~N[( L , L tey 2.12
ol ) (8=4py+py)’ 3—4p;+p, (2:12)
A feature of tribological importance to emerge is that the higher parts of the profile have bigger
curvatures ¢, as defined by (2.5). This can be seen from the correlation coeflicient between C and
Y,, given by 2(1—p,)
corr (C,Y,) = ———FL__
(G 1) = (6 —8p; +2p,)¥’
which is always positive. This correlation coefficient is (3)¥if p; = p, = 0, when the ordinates are
independently distributed. The distribution of the modulus of A/ is a folded normal distribution
(see Johnson & Kotz 1970), with a mean given by

E(M]) =3 (1;”2)*. (2.14)

(2.13)

T

When p, = p3, the case when the correlations are exponential, (2.10) and (2.11) reduce to the
equations derived by Whitechouse & Archard (1970).

2.2. Dustributions of peaks (using truncation)

A peak is defined, with the use of three ordinates, when the central ordinate y, is higher than
the other two. The condition is therefore that

Y1 <Y > Y1
or s.4>0 and s >0.

This event {S_; > 0, §; > 0}, which implies that a peak occurs, will be denoted by T. Hence the
distribution for peaks will be obtained by constraining the joint probability density function
S(s_y, 81, 9o) subject to these conditions (i.e. truncating the random variables §_; and S; below, at
zero).

So the probability density function of a peak at height y, is given by

prob (S_; > 0, S} > 0|Y; = y,).f (4,)
prob (S_; > 0, S; > 0)

_ prob (T1¥y = y,).f (4s)
prob (T)

l—pl)% (1 pl) P2— pl)
=cb(yo(1+p2 I\T5p,) S 1) 2W0) 215

@ (o, 0; L 2PLt P -22_,2;:1,; 2)

S@|T) =
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272 D.J. WHITEHOUSE AND M. J. PHILLIPS
_ exp (—3%3)
where P(Yo) = @)t (2.16)
v (f 7 exp(—3(st+si— 2ps_y51) /(1 —p?)) ds_y ds,
and D(z,z;p) _f—-cof—co (1= po) . (2.17)

This result follows as f (y,| T') is the probability density function of the non-truncated variable of a
trivariate normal distribution, when the other two variables are truncated below, at zero.

Of particular interest in tribology is the way in which the density of peaks changes from surface
to surface, the way in which the mean peak height depends on the correlations between ordinates,
and the relationship between peak height and the curvature of the peak. The mean peak height is
obtained from the probability density function given by (2.15), and is given by

[(1—py) /]2
E(,|T) = T (2.15)
0 (0,0 5250 2)

The variance of peak height is given by

6% = var (Y| T)

(1—/31)( 1—p, )5 (1=py)

2n 3—4p,+p, 4w

=1+ — . 2.19

¢(0 0.1—2p1+p2) @(0 0 L=2p1 1P\ |? (2:19)
b b 2_2p1 b b 2_2p1

These results can be obtained from results for the moments of the truncated trivariate normal
distribution given by Tallis (1961) and Finney (1962). Both of these moments have been used
extensively in tribological situations. Mitchell & Rowe (1968) used them to predict the sealing
performance of surfaces.

The density of peaks counted on a profile when digital techniques are used is better expressed in
terms of the probability that an ordinate is a peak. In terms of importance the peak density can
hardly be over emphasized. In the steel industry the peak count is one of the central parameters of
interest. If the probability that an ordinate is a peak is N then

N = prob (7))

- 1=2p,+p,
—(D(O’ K 2-2p,

_1 arctan [(M) ] (2.20)
T L—p,

When p, = p? then the results of (2.15), (2.18), (2.19) and (2.20) reduce to those obtained by
Whitehouse & Archard (1970).
For the case of independent ordinates, when p, = p; = 0, then (2.18) reduces to

E(Y,|T) = §n—3, (2.21)
and (2.19) reduces to o2 =var(¥)|T) =1 +§——9- (2.22)
’ 0 2n  4n’ ’
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The importance of (2.21) and (2.22) is in the fact that they enable the limiting values to be
obtained as the sampling interval % increases.

Another important property of peaks is their curvature, especially when contact properties are
being considered. Whether or not surface peaks deform elastically or plastically is determined by
the plasticity index, according to Greenwood & Williamson (1966). The plasticity index ¥ is

iven b
g Yy E (6\}

¥ = -g(—l%)l, (2.23)

where Eis the elastic modulus of the surface, His the hardness, ¢ is the r.m.s. (standard deviation)
of the peak height distribution and R is the radius of curvature of the peaks. Obviously in all wear
situations R is a critical factor. The distribution of the curvature of a peak has a probability
density function given by
__prob (0 < 8, < ch?|C =c¢)f(c)
f(()' T) - pI‘Ob (T) ’

(2.24)

where f (¢) is the probability density function of the distribution of the profile curvature given by
(2.11). Hence

FT) = 1 (=) “gb](vtﬁﬂi)] ”((’é‘—‘ép_’zﬁﬂ)
=0, for ¢<0, (6=8pu+2p0)’ (2.25)

2

where D(2) = o(y) dy. (2.26)

, for ¢ > 0,

So the probability density function of this distribution is obtained from the convolution of the
joint probability density function of a bivariate normal distribution when both variables are
truncated below at zero. The mean and variance of the peak curvature can be obtained from the
results for the moments obtained for the truncated bivariate normal distribution by Weiler (1959)
and Rosenbaum (1961). So

E(C|T) =; Ni%fﬁljﬁ] . (2.27)

and var (ClT) — (_3___4_1_.ﬁ_'|'_f_)_2_) |:8TE(1—p1) +2[(3—4P1+p2) (1 —‘p2)]% (3—4P1+p2)]. (2.28)

4hin(1—p,) N - N?

From a knowledge of the mean and variance of the peak curvature, the proportion of peaks on the
surface which will elastically or plastically deform could be estimated. This is an important
tribological feature which has so far been neglected. When p, = pj then the mean peak curvature
given by (2.27) reduces to the result obtained by Whitehouse & Archard (1970).

It is possible to obtain similar results for the height and curvature of valleys, which can also be
important in frictional studies involving the passage of fibres over rollers, or similar applications.
An interesting result is that the conditional distribution of peak height for a given curvature is the
same as for the conditional distribution of the profile height for the same given curvature, as given
by (2.12). This follows from a result given by Lawley (1943) and is because ¥, is not truncated.

L—py) P 1-2pi+p
Y.IC = , T ~ N[ ( 1 , 1 2 .
Tl oT) (83—4py+ps)’ 3—4py+p,

Hence

(2.29)
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274 D.J. WHITEHOUSE AND M. J. PHILLIPS

Combining (2.24) and (2.25) with (2.29) we obtain the joint probability density function of peak
height and curvature as

prob (0 < 8; < ch?|C = ¢) f (¢, 9,)

f(c,yol T) = pI‘Ob (T)
1 ch? —ch?
- N[¢ (W) MQD(W)]J{(Q%), for ¢> 0,
=0, for ¢<0, (2.30)

where f(c, y,) is the joint probability density function of the profile height and curvature. So as
before with (2.25) the peak probability density function is obtained by multiplying the profile
probability density function by prob (0 < §; < ch?|C = ¢) and then normalizing. This connection
between peaks and profile is a consequence of the definition of peaks in terms of a triplet of
ordinates. Whitehouse (1971, 1978) has shown that a more refined definition of a peak is rarely
if ever needed in practice. If p, = p% then (2.30) reduces to a result which corresponds to that
given by Whitehouse & Archard (1970).

The correlation coefficient of peak height and curvature can be obtained using (2.30), in terms
of the variance of peak height. Thus

[ (1—203+p5) F
corr (C, Y| T) = [1 B=ap, 5y var (T (2.31)

using (2.22). This correlation coefficient is always positive so that the higher the peaks the larger
is their curvature (which makes physical sense). From a result observed by Regier & Hamdan
(1971), it can be shown that

0 < corr (C, Y| T) < corr (C,Yp) < 1.

Formulae in §2 can in some instances be made simpler by use of the structure function §(7)
rather than the auto-correlation p(7) where

S(1) = E(y(x) —y(x+7))% = var (y(x) —y(x +7)) (2.32)
thus S(7) = 202(1—p(7)). (2.33)

It can be seen in §2 that many expressions involve the differences 1 —p;, 1 —p,, etc. so that the
simplifications made possible by equation (2.33) are obvious. In effect peak and slope parameters
are generally better specified in terms of structure functions than of correlation functions because
peaks and slopes, in discrete analysis, are defined in terms of differences. Thus

corr (C, Y,) = (4—_1_—)—% (2.34)
= % arctan (4'§I§_ —2) ! (2.35)
E(M) =3(52) (2.36)

for example where S, = 2(1—p;) and 8, = 2(1 —p,), o2 being taken as unity.
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3. STATISTICAL MODELS OF RANDOM SURFACES — ANALOGUE AND DIGITAL
3.1, Limiting behaviour of the correlation coefficients between ordinates

So far distributions have been obtained for those surfaces characteristics deemed to be of most
interest in tribological situations. These expressions have been derived in terms of ordinates of the
profile; little has been said about the correlation coefficients between ordinates on which the
formulae depend. These are p,, the correlation between ordinates a distance 4 apart, and p,, the
correlation between ordinates 2/ apart. The only constraints on p, and p, are those obtained by
making the matrix in (2.1) positive definite. So p, and p, will vary as 4 varies, depending on the
shape of the autocorrelation function of the surface. As £ approaches zero

limp,(h) = limp,(h) = 1, (3.1)
h—0 h—0
and as h approaches infinity lim p,(k) = lim p,(k) = 0. (3.2)
h— 0 h—w
| Y . s B S

—p, boundary g=(2p?1) —-——
N values

(_1 1_1) (1{_— 1)

Ly
Ficure 1. The contours of peak density (the probability that an ordinate is a peak) in the correlation domain
showing two correlation functions.

If p, is plotted against p, as % varies in the p;, p, domain (see figure 1), then the curve will start at
(1,1) for A = 0 and end at (0, 0) for z = co. The shape of the curve will depend on the autocorrela-
tion function. The boundary imposed by the positive definite matrix are given by a straight line
between the points (—1, 1) and (1, 1), and by a parabola through the points (—1, 1), (0, — 1) and
(1,1). The expressions derived in §2 are not valid if the autocorrelation function chosen gives
values outside this boundary. However, these need not be considered for other violations also
occur. For instance, in a second order random surface the only solution which lies on the boundary
is the one in which the autocorrelation function is cosinusoidal and not random. In the next
sub-section some parameters of the distributions will be investigated as & changes for different
autocorrelation functions. This will illustrate how much variation could be expected when
measurements are taken with different spacings between the ordinates.

24 Vol. 290. A.
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276 D.J. WHITEHOUSE AND M. J. PHILLIPS

3.2. Behaviour of discrete parameters in the correlation domain

The probability that an ordinate is a peak is given by Nin (2.20). Rearrangement of this shows
that the contours for N are a family of straight lines all starting from the point (1, 1) and having
slopes between 0 and 4. The particular autocorrelation function chosen for the statistical model
of the surface determines which values of N would be obtained. For example, for the exponential
autocorrelation function, which gives the curve p, = p2, the values of N will vary between } and
4 as h varies. This was discussed in some detail by Whitehouse & Archard (1970). Other auto-
correlation functions give different results. For instance if the correlations satisfy

pe = p1/(4=3py) (3.3)
E=07 , 05 0.3
(-1,1) : T S B — . (1.1)
i Vi
" '/'/// 4
7/
e o fidn) -~ = -
e / .10 A

Y ; p,  boundary p =(2p*1) ——= =
’ // E values —
N :

- : l/ -4
. A ’ /
(_1 __.1) 1 1 1 > -7 1 | 1 (1 _1}
Lo . . 1
Ficure 2. The contours of mean peak height, showing two correlation functions and the limiting value at zero
correlation.

then the values of N vary between 0 and % as % varies (see figure 1). For the mean peak height,
which is given by (2.18), the contours are not straight lines (figure 2), though they still pass
through the point (1, 1). The values of the mean peak height vary between 0 and (4r)%. For the
exponential autocorrelation function the curve p, = pj will cross the contours from 0 to 3/(2nt),
while for the autocorrelation function with the curve given by (3.3) the contours between
1(An)? and 3/(2n?) will be crossed.

These two examples of possible autocorrelation functions suffice to illustrate the fact that the
possible variations in measured parameters on one type of surface may be larger than the differ-
ences between different types of surface. The variation will depend on how the parameters vary
as h, the sampling interval, varies. Also it is possible to get very different behaviour between
surfaces with different autocorrelation functions as £ varies from 0 to co. This point will be
emphasized when practical results are considered in §4.1. It now remains to consider how the
discrete approach ties in with the continuous analysis found in communication theory and what
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surface models need to be considered in order to meet the range of real surfaces met with in
practice. A main objective of this paper is to use this model to quantify the real variations in the
surface parameters likely to be met with in practice.

3.3. Limiting behaviour of distributions

In this paper peaks have been defined by considering a triple set of ordinates, equally spaced at
a distance 4. This is a discrete approximation to a peak on the real surface which forms part of a
continuous boundary. The continuous definition of a peak is given by that point on the boundary
(or profile) where the slope changes from a positive to a negative value. It is necessary for the
discrete results, obtained using three ordinates, to converge to the results obtained for the con-
tinuous profile as 4 approaches zero.

Rice (1944), Longuet-Higgins (1957) and Bendat (1958) have evaluated the peak distribution
on a continuous waveform. They used the distribution of the amplitude of the waveform and its
first and second derivatives. To determine the distribution of peak height for a normal (gaussian)
surface they used a statistical model of the waveform whose autocorrelation function p(7) had the
first and third derivatives at the origin zero. So the autocorrelation function can be expressed by
using Taylor’s theorem in terms of only the second and fourth derivatives D, and D,, where

_ dp(h)
D=

; (3.4)
k=0

for r a positive integer. Rice (1944) obtained the probability density function of the distribution
of peak height Y, in terms of D, and D, as

fl) = (D—;—D) (2m) [ (w) + wD(w)] (3), (3.5)
where w= (—E)f—_:D—;—)zg)% (3.6)

The mean and variance of the peak height was not evaluated because they are not very significant
in communication theory, although they are in tribology. However, from (3.5)

E(Y) = (3n)¥(—Dy)/(Dy)} (3.7)
and var () = 1+ (1 —in) (= D,)?/D,. (3.8)

Rice (1944) and Bendat (1958), in addition to the probability density function of the peak
distribution given by (3.5), obtained results for m,, the mean number of peaks in unit distance,
and n;, the mean number of crossings of the mean line in unit distance, in terms of D, and D,.

These are 1/ D \}
o 4
my =5~ (—D2) (3.9)

and ng = (—Dy)¥/m. (3.10)

Now the results obtained in §2 can be compared with those given above by first expressing the
autocorrelation function in the Taylor’s expansion and then investigating the behaviour as the
sampling interval 4 tends to zero, when p; = p(#) and p, = p(24), where
h? ht
p(h) = 1—(—D2)2—!+D4Z-!+0(h4). (3.11)
24-2
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We can use this limiting process method for both profile and peak results. Then the distributions
of the profile obtained by the discrete analysis in §2.1 becomes for example

s =s{((29)
from (2.7), (C,T) ~ N[(g) (_342 "172)] (3.13)
from (2.8); and therefore M ~ N[0, —D,] (3.14)
from (2.10), and C ~ N[0,D] (3.15)

from (2.11). The conditional distribution of ¥, given C ( = ¢) is

(Y|C =¢) ~ N[(_D]j?) 3 1—%)—2] (3.16)

from (2.12). This result has important tribological significance. The correlation coefficient bet-

ween C and Y} is given by
corr (G, ¥y) = —Dy/ (DYt = no/2m, (3.17)

from (2.13), (3.9) and (3.10). The results obtained in §2.2 for the peak distributions can be
compared as % tends to zero with the continuous results of Rice (1944) and Bendat (1958). It can
be shown that the results of the probability density function, mean and variance of the peak
height given by (2.15), (2.18) and (2.19) become the results given by (3.5), (3.7) and (3.8)
obtained by Rice (1944). This clearly vindicates the use of sampled data methods to analyse
surfaces.

Discrete formulae, when taken to the limit, can be usefully employed to give the analogue
formulae for some useful tribological parameters not hitherto evaluated. For instance (3.7) and
(3.8) can be expressed in terms of the limiting form of the correlation coefficient between C and
Y,, given by (3.17). Thus

E(%|T) = (3m)corr (G, ) (3.18)
and var (Y| T) = 1+ (1 —4x) [corr (C, Yp)]? (3.19)

Also a new analogue formula for the probability density function of peak curvature can be found
by taking the limit of (2.25), which gives

¢ —c?
feT) = Eexp (m), for ¢ >0,

=0, for ¢<O. (3.20)

This is a Rayleigh distribution, not a gamma distribution as was originally suggested by Green-
wood & Williamson (1966). The distribution of peak curvature depends only on D, and not on
D,. This is not an unexpected result as the curvature can be defined in terms of the second differen-
tial of the profile only, in the region of the peak, as the first differential is zero. Consequently D,
derived from the autocorrelation of the second differential would be expected to play a major
r6le. The distribution of the height of the envelope of a narrow band random surface also has a
Rayleigh distribution.
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From (3.20) it is possible to obtain
E(C|T) = (3nDy)} (3.21)
and var (C|T) = Dy(2 —}n). (3.22)

These are also the limiting values of (2.27) and (2.28). Also the probability that a peak has
curvature greater than c¢ is given by

— 2
prob (C > ¢|T) = exp (——). (3.23)
2D,
I 1.2533
1.2}
10F i . 1.0
\-.\‘ //
~.. //

§ ~. // /. Cofr(C»Y;)}_ — — —
S = : corr(CY)|T)—"—"—"~
g 08f RN sd{yiT)———
| REPSN E(IT)
B /" Ness1-
— / 4
m’ '0.6" / /
= 7 e
9T R
@ s/

04F 7 7

2
/ B
/ R
R
0.2} ad
7
L S
74
” .
0 0.2 0.4 06 08 10

corr (C, Y,)

Ficure 3. Limiting distribution of peak height, showing four peak parameters.

The conditional distribution of the peak height for a given curvature is the same as that for the
conditional distribution of the profile height for a given curvature, and hence is a normal (gaussian)
distribution as given by (8.16). Hence combining (3.16) and (3.20) gives the joint probability
density function of the peak height and curvature as

_ ¢ — (Dyyg +2Dyy0c+¢%)
F630T) = =Dy | = Dt

=0, for ¢<0. (3.24)

], for ¢ > 0,

This is also the limiting value of (2.30). From (3.24), or by taking the limiting value of (2.31), the
correlation coefficient between peak height and curvature is given by

-D,) 2-1n ]%-

(
corr (C, Y| T) = (D)} [1+(1—"2*7T)D§/D4

(3.25)

Hence the mean and standard deviation of the peak height, given by (3.18) and (8.19), and the
correlation coefficient between peak height and curvature, given by (8.25), are simple functions
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of the correlation coefficient between profile height and curvature, given by (3.17). The functions
are given in figure 3.

So far only boundary conditions have been placed on the correlation coefficient values, in
order to allow the discrete analysis to be valid. Now it is necessary to know what range of surface
models need to be examined in order to cater for practical surfaces and, of equal importance, what
additional constraints have to be imposed on such models in order to satisfy theoretical con-
siderations. Both considerations have to be satisfied if analytical predictions of tribological
situations are to be meaningful.

3.4. Suitability of statistical models

Itis evident from the above discussion that ideally a statistical surface model should be such that
the autocorrelation function satisfies the condition that D, and D, exist. All of the results obtained
by either analogue or discrete methods (when taken to the limit) only truly allow peak height and
curvature properties if these two derivatives exist. Such comments have been made previously by
many authors, for instance Bendat (1958), Davenport & Root (1958) and Nayak (1971), the
behaviour of the autocorrelation function at the origin being taken as the criterion of the suita-
bility of the model. This is not, however, the only way of presenting this critical information.
Perhaps a more practical way is to consider the restrictions on the power spectral density function
g(w) of the surface model. The power spectral density function gives the autocorrelation function
p(7) by means of the relationship

p(7) = f Owg(a)) cos (wr) do. (3.26)

The reciprocal Fourier transform of (3.26) gives g (») in terms of p(7) as

g(w) = %fomp(T) cos (w7) do, (3.27)

which is a statement of the well known Weiner—Khintchine relationship (see, for example, Cox
& Miller 1965).

For D, and D, to exist, D; and D; must also exist and be zero. So for r a positive integer, if
D,,_, exists then

Dy, = lim (—1)" f : w¥~1g () sin (wr) do

70
=0, (3.28)
and if D,, exists then D,, = (- 1)".[OO w¥g (w) dw (3.29)
0

is finite. So the infinite integrals in (3.28) and (3.29) must converge; if D,, is to exist then w#g (w)
must converge to zero fast enough for the infinite integrals to converge for » = 1 and 2. It will
often be more convenient to work with g(w) as frequency limitations are often imposed by the
instruments.

The theoretical constraints having been decided on, it is necessary to specify a model which
will provide just enough versatility to cope with most real surfaces. Obviously not every surface
likely to be used in engineering could be included, but certain broad types have to be taken into
account. Three such types will now be given.
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Type 1. Surfaces produced by conventional finishing processes, such as grinding, lapping
polishing, electric discharge machining etc., in which there is almost a purely random waveform,
which may well be limited in bandwidth.

Type 2. Surfaces which have two elements, one random and one deterministic, in which the
random element is modulated (multiplied), by the deterministic. Surfaces like this are often
produced in single tool cutting operations like diamond turning, in which the random element is
introduced by a variable amplitude or phase of the feed mechanism. This type is often called a
narrow band random surface indicating that the power spectral density function is centred
around the fixed frequency.

Type 3. Surfaces in which the two elements are not modulated but are simply added together.
This often happens in type 1 surfaces, where the machine has introduced a small amount of
chatter, or in type 2 where the slideway has a systematic error of movement.

3.5. Statistical models

Ideally in order to be able to simulate practical surfaces the statistical model chosen should be
able to take on all the possible types discussed above. The effect of digital methods could then be
investigated for most surfaces. In the past a number of models have been used to simulate
surfaces. These have been models of a random nature, because most conventional finishing
processes such as grinding have this character. Because of this it is natural to think in terms of
exponentials when building the probability model. These arise because there is evidence from
Whitehouse (1971) that the peak positions of many surfaces obey a close approximation to a
Poisson distribution law. So there is a uniform probability in any interval of a peak being at any
position. It can also be shown that the general autocorrelation function can be written in term
of conditional probabilities. Thus

p(r) = Ely()-y(x+7)]
= B{E (0]
= X Erl0/©), (3.30)

where ¢ is the event that y(x) and y(x +7) all lie within an impression left by one grit, {, is the
event that they lie within the impression left by two grits, and so on, and f({) is the corresponding
probability function. If for example the grits are assumed to be square then (3.30) reduces to

p(1) = exp (= Aq|7]), (3.31)

where Agis the density of grit edges. Various other forms for p(7) result depending on the distribu-
tion of the individual grits, though they all involve the sum of exponential terms with low order
polynomial coefficients. In view of this it is plausible to consider the use of a simple exponential
function for the autocorrelation function of the surface model. This produces the simple relation
between p, and p, of p, = p3.. The power spectral density function of the autocorrelation function

p(r) = exp (—a|7]) (3.32)
is given by g(w) = %f: exp (—a|7|) cos (wr) d7
o
= T+ o) (3.33)

So obviously, from (3.33), w*g(w) does not tend to zero as @ tends to infinity for eitherr = 1 or 2.
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Hence from (3.29) D,and D, do not exist, so that the mean number of peaks or crossings, given by
(3.9) and (3.10), do not exist. Also the discrete results for peak behaviour do not converge to the
analogue results.

The same situation arises when a similar autocorrelation function, the exponential cosine
(Bendat 1958), is used. This also has a slowly decaying spectrum which causes the derivatives
D, and D, not to exist. This is because if

p(7) = exp (—|7|) cos (2nbr) (3.34)
then g(w) = %f: exp (—|7]) cos (2r67) cos (w7) dr
2 1+ (216)2+ w? (3.35)

T a1+ (0+210)%] [1 + (0 —270)%]

So the spectrum given by (3.35) belongs to a first order system, in the sense that at high frequencies
it decays at 6 dB per octave, i.e. w~2in the power spectral density function, as does the pure expo-
nential autocorrelation function. It is obvious from the constraints imposed by (3.28) and (3.29)
that the decay of the spectrum must be faster than w—4, in order that the peak distributions may
exist. It is the degree of the decay of the spectrum which determines the suitability of the model.
Evidently to satisfy this condition imposed on the power spectral density function it must decay
at a rate of w=S, or faster. Modification of the simple exponential autocorrelation function to
comply with this condition gives the following sum of exponentials. Thus

p(r) = YA exp (— 7)) ptAep(=ylrl) | yly+hexp(=flr)) 444
(r=10)B-1)A+y+p) (v=1) =B A+y+p) B-1)B-y)A+y+p) >

where 1 < y < fso that

g(w) =2 vB(y+4) (v +1) (B+1)
n(1+y+8) (1+0%) (v*+0%) (B2 + %)

(3.37)

This autocorrelation function is always positive, and for large y and £ it behaves like the simple
exponential function, given by (3.32) with « = 1. If y and £ are unity then

p() = (1+|7|+37%) exp (—|7]) (3.38)

2 8

so that g(0) =~ ST

(3.39)

The existence of the four derivatives of the autocorrelation function at the origin is now guaran-
teed for the power spectral density function decays as w~¢. Thus

it/
D= il (3.40)
and - Bl e (3.41)

Both D, and D, are zero and so all the discrete results obtained using the autocorrelation function
given by (8.36) will in the limit be the same as the analogue results. This function corresponds to
a surface with a model of type 1. A more versatile model is required to cover types 2 and 3.
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Such a model may be obtained by modifying equation (3.34), the exponential cosine case, by
adding a decaying periodic term and a variable one to give a new autocorrelation function. This
model will cater for types 1 and 2 and some aspects of type 3. Thus

p(r) = (1-—5’) exp(——|T|)cos2n07'—(—1§—1—t':é—q)exp(—,6’|T|)sin2n607'+écos2ny7, (3.42)
0

where B = [4(1 +4n263) — 4n267]}, (3.43)

where 0, 6, and y are all measured by taking the exponent of the first term as unity. When
C > 0 p(1) # 0 at 7—>c0 but it is a good approximation to many physical situations for small 7.

0.8

0.4

0 Il L 1 1 1 1

1 2 3 h

Ficure 4. Shows how the shape of the model 1 autocorrelation function changes as 6, changes and how they
differ from the exponential p, = p? at the origin.

When C = 0 this autocorrelation function will be referred to as model 1. This autocorrelation
function is made up of three separate terms each having its use. The first term (1 — é’) exp (—|7])
cos 2n07 takes account of types 1 and 2. The second term serves two purposes. Its main use is to
make sure that the correlation function behaves in a theoretically acceptable way at the origin.
The other use is to change the basic form of the autocorrelation function as is seen for different
values of 6, in figure 4. The third expression in the equation takes account of surfaces of type 3.
From the point of view of merely satisfying the practical types of surface equation (3.42) could be
written as . .
p(1) = (1=C)exp (—|7|) cos 2n07 + C cos 2wyt +¢, (3.44)
where ¢ is the second term of the equation (3.42) with 6, chosen so that it only influences the
behaviour of p(7) for very small /. In fact 6, can always be chosen so that the effect of the second
term is masked by the occurrence of any smoothing of the profile such as happens with the finite
tip of the stylus in a stylus instrument. It can also be chosen so that it represents the instrumental
distortion term present. Thus this autocorrelation function may provide very general coverage
of surfaces found and measured in practice.
The power spectral density of the random terms of equation (3.42) when C=o0is given by

[1+ (2r0)2] [£2+ (2700)*] [ 5% + (210,)* — 1 — (270)?] + w*{[ 2+ (216,)*]
2 +4[f2 — (2n0)%(210,)] —[1 + (276)?]%}

2(0) = L T o T 2RO [1 7 (0= Zr0)T [P+ (0 7 200, 7] [ F* 5 (0 —2nb)T] ° (49)

25 Vol. 290. A.
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which in the limit as @-> 00 attenuates at a rate proportional to w® and therefore satisfies the
criterion laid down in the first part of this section.

Conceptually the first two expressions in equation (3.42) reflect the purely random compo-
nents of the profile waveform whereas the additional cosinusoidal term reflects the deterministic.
As such, for finishing processes the deterministic additive element is usually small when com-
pared with the random element; it usually also has a shorter wavelength than the drop-off rate
of the exponential term. An example of this type of surface is shown in the next section.

In equation (8.44) D; and Djare zero, the cosinusoidal additive term not contributing. Thus

D, = (1—-C)[1—2p— (2n0)2] — 4n?Cy?, }

Dy = (1—- é) [1—6(2r0)2+ (2r0)2+44[262 — 1 + 3(2n0)?]] + 161546*'3/4. (3.46)

The equation (3.42) therefore satisfies the requirements both theoretical and practical for a
statistical surface model.

Depending on the values £, 6, é‘, v this function can correspond to any of the three types of
autocorrelation function set out earlier so:

if #>1 and é=0, 0>0 p(r) istype?2,

if f#>1 and 6’,0=O p(r) istypel, ;
if C#£0, f>1, 6=0 p(r) istype3. }

There are other less versatile possibilities for instance the gaussian autocorrelation function
used by Beckmann & Spizzichino (1963) with

p(r) = exp (—7%), (3.47)
g(w) = n~¥exp (—}0?); (3.48)
another is the Lorentzian function used by Chandley (1976) with
p(r) =1/(1+7%) (3.49)
and ¢(0) = exp (—0), (3.50)

where (3.49) satisfies (3.3), when p, = p(k) and p, = p(2h).

Both of these functions have derivatives of all orders at the origin and therefore these are no
theoretical problems in using them. It is also possible to modify these functions with a periodic
term which in the case of the Lorentzian becomes

p(1) = (cos2n0r) /(1 +72) (3.51)
and g (w) = exp (—2n0)coshw, 0 < w < 2n0, 5 52
g (w) = cosh (2n0) exp (—w), w© > 2n0. } (3.52)

Again this is well behaved at the origin: the only real difficulty is the practical one of fitting the
different types of surface into this form.

3.6. Summary

From what has been said in this section it is clear that there are a number of theoretical and
practical considerations which have to be met before a statistical model of a surface can be
regarded as acceptable. The necessary criteria have been examined and some models which
satisfy them developed.
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4. RESULTS
4.1. Results obtained from the digital analysis of surfaces

The first step in determining how the surface parameters change as the interval between the
measured ordinates is varied is to show that the formulae to be used are correct in a practical
sense. In §2 general expressions were developed relating many tribological parameters to two
discrete measurements of the autocorrelation function p, and p, spaced %4 and 24 from the origin
of the correlation function respectively. Change in /4 changes p, and p, in a way dependent on the
shape of the correlation function. The changes in p, and p, therefore change the values of the
surface parameters so that one can simulate the answers which would be obtained from a surface
using data points spaced by 4 and measuring the parameters direct with the conventional form-
ulae. For example, one could measure the mean peak height simply by scanning the data points
obtained from the surface, selecting all the peaks and calculating the mean value from the dis-
tribution of peaks. Alternatively the technique suggested in this paper is to measure the auto-
correlation function, mark off the values of p, and p, corresponding to the spacings of # and 24
and insert p, and p, into formula (2.18) which, with equation (2.20) may be written

mean peak = E[T;| T] = [(1~py)/x]} [ Zaretan [(Btere] (4.1)
This alternative method may well be more effective as a large number of tribological parameters
can be considered from just one estimating situation, i.e. estimating the autocorrelation coeffi-
cients. If p, and p, are known, all the other parameters may, of course, be determined at the same
time without examination of the data points, thus ensuring a very fast and simple way of measur-
ing the surface. The only practical modification to all the formulae in § 2 is that all terms involving
p1 and p, have to be multiplied by the (r.m.s.)? value of the surface because the autocorrelation
function was normalized so that 4(0) = 1. Hence in the mean peak height example above the
working formulae would be (if o is made equal to (2/m)}R,)

E[Y|T] = (%)%Ra(l _pl)%/%arctan [(w)j (4.2)

T 1—p,

the o cancelling out in the numerator and denominator in the arc tangent bracket.

To test the validity of the equations in §2 and hence whether the procedures outlined above
could be considered equivalent, some real surfaces were examined. The experimental procedure
follows.

A Rank Taylor Hobson Talysurf 4 stylus surface finish measuring instrument was connected on
line to a Hewlett-Packard 2116 C computer in a manner described by Kinsey & Chetwynd
(1973). Ten specimens were selected typical of the various processes found in practical engin-
neering. Four of these are shown together with their autocorrelation functions in figure 5. The
surfaces were measured digitally five times at an interval £ corresponding to the stylus tip dimen-

sion, that is about 2 pm. For each of the tracks various tribological parameters were evaluated
using three point analysis and using conventional formulae. The tribological parameters chosen
were the peak density, the mean peak height, the average curvature at the peaks together with
their standard deviations and the average slope. After this the interval between ordinates / was
changed to alonger one and the parameters remeasured. This was repeated a further time making
three different sample intervals for each track covering a range of 10 to 1 in all cases. It was felt
that this number of parameters and sample intervals was sufficient to establish the validity or
25-2
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otherwise of the theory. At the same time that the parameters were measured the autocorrelation
function of the profile trace was also measured, and values of p, and p, corresponding to the
sample interval 4 and 2/ of the digital data found. In fact the whole autocorrelation was not
needed: only the two lag positions corresponding to £ and 24. The measured values of p; and p,
were then substituted into the relevant formulae taken from §2: in this case equations (2.15),
(2.19), (2.20), (2.27), (2.28) and (2.14) respectively for mean peak height and standard devia-
tion, peak density, mean peak curvature and standard deviation, and average slope. These
values were then compared with the directly measured values. Table 1 shows the results obtained,
expressed as a ratio of direct measurement to that obtained by using the estimated autocorrela-
tion function. The spread values corresponded to the standard deviation of the data. It was found

d

)|

No.l,o= 0.5, ground

Ilpm 6=0,6=6 h/pm =units

THE ROYAL
SOCIETY

No.2,0=2 pm,shot peaned
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100 pm . 10 025
Do\ 20 0.5
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No.3,0=2 pm, turned

ISpm 0=3,6,=6
200 pm
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No.4,0=1pm,diamond turned

[l pm 6=0,c=1y=2
100 pm
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Ficure 5. Shows four typical surfaces together with their autocorrelation functions. Three sample intervals are
shown on each autocorrelation function. Estimates of how these intervals relate to the decay rate are shown.
These estimated values of 2’ can now be inserted into figures 1-13 to show the values of the parameters.
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that neither mean values nor the spreads changed significantly for different sampled data
intervals so the results were justifiably pooled for each parameter. These results clearly vindicated
the theory and hence the use of the equations derived in §2. The only problem encountered was
the need for the autocorrelation function to be accurately estimated especially when p; and p,
were close to unity as often happened when 4 the data spacing was at its smallest value.

By changing the sampling interval of the data for each trace it was possible to observe the
changes in the actual values of the parameters measured (see for example table 2 and figure 5).

P9

These turned out to be very large as suspected. On the specimens chosen the mean peak height

’ <‘lf~<‘j changed by a factor of about 2.5:1 as the sample interval was changed from 2 to 24 um. In the
: case of the peak density it was about 4: 1, the peak curvature almost 10:1 and the average slope
P
olm
= TaBLE 1.
UJ = peak height peak curvature
O , A N peak p A — average
E @, mean std. dev. density mean std. dev. slope
W

ground surfaces  0.95 + 0.03 0.94+0.05 1.00+0.02 0.93 +0.02 1.03 £ 0.04 0.95 + 0.02

turned surfaces
0>1 1.10+0.11 1.00+£0.07 0.93+0.04 1.00 + 0.06 1.18 +0.05 0.98 + 0.03

grand averages 1.025 + 0.08 0.97+0.06 0.965+0.04 0.965+0.06 1.105+0.05  0.965+ 0.03

PHILOSOPHICAL
TRANSACTIONS
OF

TaBLE 2.
peak height peak curvature
peak density (um) (mm-~?t)
r A Al s A N A~ N
spacing of ordinates/um h=2 h =10 h =20 h=2 h=10 h =20 h=2 h=10 h =20

irface no. 1 in figure 5: ¢ = 0.5 um

equivalent spacing of ordinates h = 0.2 h = 1.0 h =20

value of correlation p, (k) 0.81 0.37 0.13

value of correlation p, (2k) 0.67 0.13 0.02

results 0.26 0.30 0.31 0.22 0.38 040 133 10.1 2.4

irface no. 2 in figure 5: 00 = 2

equivalent spacing of ordinates h =005 K =025 K =05

value of correlation p, (k) 0.95 0.67 0.30

value of correlation p, (2k) 0.86 0.30 —0.18

|
<f—;f]f“‘ results 0.14 0.23 0.34 0.5 1.3 1.7 198 24.9 9.9
d

.3 uface no. 3 in figure 5: 0 = 2

equivalent spacing of ordinates h’ = 0.008 &' =0.04 AL =0.08

value of correlation p, (k) 0.999 0.97 —0.10
@) = value of correlation p, (2k) 0.997 —0.10 —0.76
gﬁ E results 0.09 0.16 0.32 2.26 2.28 2.12 16.6 12,7 8.0
= Un‘face no. 4 in figure 5: 0 = 1
I equivalent spacing of ordinates h = 0.04 h' =02 h' = 04
= U2 value of correlation p, (k) 0.98 0.6 0.73

value of correlation p, (2k) 0.94 0.73 0.4

results 0.166 0.36 0.23 0.24 0.49 0.64 60.2 16.4 2.8

ments on figures

.) kis the sample interval in pm from figure 5. 4’ is the value of & when the unit of length is the distance for decay of correlation
ill to 879%,. 4’ is the value to insert in the abscissa of figures 6-13.

) To convert mean peak height from figure 9 to pm multiply by o in um for the surface.

}) To convert peak curvature figure 12 to units of mm~! multiply antilog of value by o (of surface) in mm and the ratio (h’/h)?
re h is measured in mm.
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over 2:1. These factors obviously depended to some extent on the type of specimen but the
factors given are very typical. Obviously variations of this proportion are a series problem to the
tribologist and the nature and extent of such variations must be known in order to be able to deal
with them and so enable meaningful comparisons between workers to be carried out. Because of
certain limitations on sampling rate and traverse lengths it was considered impracticable to
extend the practical investigation on real surfaces: these restrictions increasing the possibility of
missing some of the important features in the relationships between parameters and interval A.
The method adopted to explore fully the sampled data problem was to use the autocorrelation
model developed in §3, equation (3.42), by fitting different 6 and 6, values into it to simulate
different surfaces and then, using the equations developed in §2, see how the surface parameters
changed as the sampling interval changed.

0.8

p(7)

0.4H

-04}

Ficure 6. Autocorrelation models. This illustrates the behaviour of model 1 and the exponential autocorrelation

—AliTl
function at the origin. p(7) = e~'I"'cos 2n0£+22—n7- sin 2n0,7; 0, = 6.
0

4.2. Results obtained from analysis of surface models

The surface likely to cause the largest problems are those of type 2: those in which there is a
strong oscillatory component; for this reason surfaces of this type were singled out for the most
extensive examination. Surfaces of type 3 do not need to be investigated separately because their
behaviour is dominated at small spacing intervals by the exponential component, i.e. p, is near to
the value of p;. Very large additive periodic components are usually confined to rough turning
or milling and as such are not often used in tribological experiments.
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Figure 6 shows autocorrelation functions obtained using the chosen correlation model (equation
(3.42)) referred to here as model 1 for a variety of values of 6 and 6,. The abscissa is the lag or
sampling interval 2 measured in units of the exponential decay. This means that when the abscissa
reads unity the exponential envelope of the oscillating correlation function has fallen to e-1, i.e.
379 of its original value. Whitehouse & Archard (1970) chose to call ordinates ‘independent’ if
Py = 0.1 which in their case meant that 4 was about 2.3 (= In 10),

: P,
(~1,1) : ' ]
\
LAY
\* \ i
y ff
LB\ r i
v\ k
X \ i )
\‘ \ L ; p'g:pl (pl 0) ______
\* \\ / p2:p12 b+
l‘* r {f 0:0 ————o—t—b
N\ 1 .
¥ 0 P, T oo
X 1 €0—coo—axs
A 4
\\ | f 3 -_—
\\ }f p2:2p12——1 A
\\ }7’ a 1is slope
X I
Y )‘,(
x *
\\\ , ){/
. \‘ /’x
1,k B

Ficurk 7. Comparison of locus of p; = p(h) p, = p(h) for four variations of the derived autocorrelation model 1
e— ATl

20,

with the exponential autocorrelation function. p(7) = e~!7!cos 2n0t + sin 2r6,7; 0, = 6.

Four types of manufacturing process are simulated in what follows. If 6, = 6, the value of
0 = 0, corresponding to the near exponential, corresponds to grinding and honing, 6 = }
corresponds to shot blasting or shot peaning and § = 1 and 6 = 3 are typical of diamond turning.
In figures 8-13 different tribological parameters are plotted as a function of / the sampling inter-
val. These figures are intended only to show the nature of the relationship between the parameters
and % for various processes in a convenient form. If an experimenter wants to know how sensitive
his surface is to sample interval or to determine the parameter values corresponding to a specific
scale of size of asperity — as determined by % — he must first measure the autocorrelation function.
Then he should measure p, and p, from it, corresponding to the sample interval 4 and 24, and
insert them into the relevant formula in §2. Figures 6-13 are only meant to give a clue as to the
nature of the variations for various types of surface. It might be that his surface correlation
function corresponds exactly in which case he need not use the formulae but can read the para-
meter variations directly off the graph after taking care to match the horizontal scale. An example
of how to do this is shown in figure 5 and table 2.

Because, in the formulae of § 2, only two parameters, p; and p, are involved, it is possible to see
how they relate to each other as £is varied for the different types of surface mentioned above. This
is shown in figure 7 with p, as one axis and p, as the other. The four curves corresponding to the
four @ values. All start at (1, 1) where 2 = 0 and progress to (0, 0) where % is infinite; the ordinates
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are independent. For 6 = 0 the curve is almost quadratic. As ¢ increases the curve oscillates
from p, positive to p; negative with increasing frequency and requires many more oscillations be-
fore the curve approaches (0, 0). For very large 6 the curve approaches the boundary p, = 2p} —1
the reason for which is described in §2.

0.5

0.4

o
o

probability, N

e
o

0.1

Ficure 8. The way in which the density of peaks varies with the spacing & between ordinates. Five correlations
are shown and the figure illustrates how all peak densities associated with model 1 reduce to zero at & = 0.

Consider the parameters in turn; the probability that the central ordinate of a triplet is a peak
(given by (2.2)) will be examined first as shown in figure 8. The four types of surface are shown, and
compared with the purely exponential. The first point to notice is that no matter what the type of
surface (any 6) the probability N converges to § as 4 tends to infinity; this is a consequence of
three-point analysm, if all ordinates are 1ndependent the chance of one being larger than any
other two is 4. However, as £ approaches zero with the exponential autocorrelation function,
N approaches 1. The reason for this difference is that in the exponential case the derivatives D,
and D, are not defined as was explained in §§ 3.3, 3.4 and 3.5. The value of zero obtained with the
model 1 surfaces is entirely consistent with the need for the discrete distributions to converge in
the limit to the continuous (analogue) distributions.

As 0 increases the probability N (equivalent to the peak density) oscillates wildly. There is an
upper envelope for N and this converges to 0.5 as # approaches zero. This is the result to be expec-
ted when sampling a sinusoidal signal with randomly varying amplitude and phase. So the
situation can arise with this type of surface that within a very short range of sampling interval &
values the number of peaks actually counted from a set of ordinates could vary from close to zero
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to almost half the ordinates! In the practical results given in §4.1 variations of four to one were
indeed found. Notice that in this figure the probability N follows the exponential autocorrelation
function for 6 = 0 until at 2 = {% it drops suddenly to zero, a consequence of 6, = 6.

The mean peak height has a similar type of behaviour as is shown in figure 9. Here again the
purely exponential curve behaves differently from the surfaces of model 1; near to the origin it
drops to zero whereas the more realistic surfaces tend to a non-zero value. In fact it can be
shown that this limiting value is given by
lim E[¥,| T] = (3m)i g
—>

1
2 my

(4.3)

where m, is the density of peaks (related simply to N) and n,is the density of zero crossings. This is
obtained from equations (3.7), (3.9) and (3.10).

1.2F

210846

E(Y,|T) in terms of s.d. of surface profile

3

h

Ficure 9. The way in which mean peak height changes with the spacing & between ordinates. The figure gives the
limiting values at the origin for four variations of model 1 autocorrelation function and the asymptotic value
for h.

As the surfaces become more periodic (6 increasing) the mean peak height oscillates as 4 tends
to zero. The upper envelope approaches the value of (4n)} as & approaches zero. The essential
message of this figure is that very large variations are possible especially with those surfaces
belonging to type 2, the oscillatory case. Very similar results are obtained with the cosine~
Lorentzian model for a surface.

The behaviour of the standard deviation (r.m.s.) of the peak height is shown in figure 10.
Again there is a common limit for all autocorrelation functions as 4 tends to infinity. Unlike the

26 Vol. 2g0. A.
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other parameters, however, the consequences of the sampling interval changing are not so
serious. Variations of only about 40 %, of the r.m.s. value of the surface are possible but this is
much smaller than with the other parameters. This cannot be said for the correlation coefficient
of peak height and curvature which is shown in figure 11. The envelopes and hence possible
values can be between zero and unity. The main feature of the mean peak curvature E[C|T"]
shown in figure 12 and the r.m.s. of the peak curvature shown in figure 13 is that for the real
surfaces illustrated by the four embodiments of model 1 the values of 4 = 0 are finite. This is not
so for the exponential autocorrelation function whose limiting value is infinity: a consequence of
the fact that the differentials at the origin do not exist.

h=l
© 0.8} h=2
S it 0748
= 7. ae’
g -
g Z
“g -~
& 06— 0603 ppi— — — = =(=0)
(: _ T o0
o 10 B76] 1 we——ees
E 0.993 h=4 3
; 04+ 0.992 ﬂ\i plzpf"‘“'—‘—O—i‘—o-—o—‘—-—l
E 0.978-
By
<
% (0,21
0 1 i 1 é 1 é
h

F1cure 10. The way in which the standard deviation of peak height changes with the spacing 4 between ordinates.
The figure illustrates the difference in behaviour at the origin between four variations of model 1 autocorrela-
tion function and the exponential autocorrelation function.

4.3. Summary

Practical results have verified the formulae developed in §2 for the tribological parameters in
terms of the two correlation coefficients. In addition to this large possible variations in para-
meters are demonstrated. The simulation of real surfaces using the model of a surface developed
in §3 has amplified the conclusions on the sensitivity of the oscillatory type of surface and has
emphasized the rate at which such changes can occur with only small changes in the sampling
interval.
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FiGure 11. The way in which the correlation between peak height and curvature varies with A. The figure shows
the limiting values of the four variations of model 1 autocorrelation function at the origin.

B=pi-= = = = =(p=0)
O==()+—t—t—ot—o—a
9():6 Jeer—are-

[

Ig (E(C|T))

FicUrE 12. Shows the way the mean peak curvaturc changes with 4. The mean value is expressed on a
logarithmic scale.
26-2
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DO

lg (s.d. (C|T))

Ficure 13. Shows how the standard deviation of peak curvature changes as & changes. It illustrates the breakpoint
where the curve for p, = p? diverges from the curve corresponding to model 1 autocorrelation with § = 0.

5. DiscussioN

General expressions have been derived which show how each ‘scale of size of asperity’ con-
tributes to an overall parameter of a surface such as peak height. This has been done by regarding
the waveform as a set of sampled data and ‘freezing’ the scale of size of asperity being evaluated
by keeping the sample interval fixed. The whole range of asperities which make up the surface
can therefore be investigated by changing the sample interval. This technique using sampled
data analysis is considerably simpler than one using a conventional filtering method. The general
expressions developed here considerably extend those obtained by Whitehouse & Archard (1970),
who limited their treatment to surfaces having a simple exponential correlation function.

It has been demonstrated that the expressions developed for these discrete properties converge
in the limit to the theoretical results obtained for continuous waveforms provided that the first
four derivatives of the autocorrelation function at the origin exist. Furthermore, using thislimiting
technique it has been possible to obtain many geometrical characteristics of the surface not pre-
viously evaluated. Perhaps the most important are those concerned with the peak curvature
distribution. Mean peak curvature used by Greenwood & Williamson (1966) can be expressed
very simply as E(C|T) obtained from (3.20), (3.29) and (3.10). Thus

E(C|T) = n®myny(2/m)3, (8.1)

where (2/n)% is the mean deviation of the profile height, m, is the peak density and #, is the zero
crossing density, all of which can be measured from a profile graph. Similar expressions have been
found for the variance of peak curvature, the peak height — curvature correlation and so on.
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Indeed it could possibly be argued that derivation of expressions useful in tribology is easier
using this limiting technique than by any other method.

During the investigation of how parameters changed with sample interval a general statistical
model of a surface has been developed which for the first time satisfies both practical and theo-
retical requirements. Thus

(1-0)
2nd,

p(r) = (l—é) exp(—|7|) cos 2nOr + exp (—|f|7)sin 21:007'+C*'cos2n77. (5.2)
Surfaces manufactured by different processes and under different conditions can as a result of
this development be modelled effectively. One of the most important results has been the dis-
closure of the large range of variation of surface parameters as a function of sample interval.
Variations of more than two to one are not uncommon for surfaces even within one type. The
quantitative extent and nature of these variations has been found by simulation using the surface
models described by the autocorrelation function in equation (5.2). These results have been
verified by varying the sample interval on real surfaces and measuring the surface parameters

directly.
1.0 \\ _____ . 10 \ 1.0

B

(=)
e
(=]

Ve T | T 0 T
(R 1 h
'ﬂhhl" - h:“: ¢ I‘
1 1 1
..’i;._ -+ 2h 1 <— 2h| >
2h
(a) (b) (c)
e

A

Ficure 14. The worst cases for parameter variations are shown. The autocorrelation function shows three possible
sample intervals each nominally within the Nyquist criterion. It is clear that only in (a) will there be any
real stability because p; and p, are not changing rapidly relative to each other.

Those surfaces which have a highly oscillatory autocorrelation function of the kind which is
modulated (that is, where the random term is multiplied by the deterministic) give rise to most
problems. This is obvious from figures 7-13. If the sampling occurs as shown in figure 14 (a) and
() considerable differences will occur in the value of the parameters. Indeed, if as is suggested in
figure 14 (¢) the sampling interval is just a quarter of the periodic wavelength and therefore well
within the Nyquist criterion of two samples per period the rate of change of p, relative to p, is
near to its maximum and will be exceedingly sensitive to small changes in 4. It appears from this
that if the criterion for sampling is one of stability of the measured parameters then % should be
made either much smaller, or alternatively, more nearly equal to half the period, so that p; and
ps both lie on the peaks of the cosinusoid. From the point of view of the possible presence of
harmonics the first criterion would be preferable, that is sampling should be between A/8 and
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A/16 where Ais the period of the oscillation in the autocorrelation function corresponding roughly
to the tool feed mark. This in effect means that for the purpose of stability of results the sampling
could be four or more times shorter than that required by the Nyquist criterion. There is another
way of making the observation that three-point analysis becomes less acceptable when the
differences between p, and p, become large and that is in terms of the surfaces themselves. In this
case it is only accurate to use three-point analysis for measuring peak properties such as curva-
ture when fourth-order central differences are small compared with first-order differences
between the heights of ordinates. Thus

84
24— (Y11 +Y-1) > Yo (5.3)
12

This same criterion does not apply to the density of peaks or to the peak height parameters
(Whitehouse 1978, to be published).

It is clear from these considerations of the effect of the spacing between data points that a lot of
trouble can be expected when fitting values of mean peak height, curvature into contact, friction
or lubrication formulae. The results certainly show why tribologists and other surface researchers
are finding it difficult to get agreement with digital data obtained from the same surface! It may
well be that variations obtainable on one surface due to this effect could be larger than those
variations between surfaces. It therefore suggests that in order to determine the best interval for
the sampling of a practical surface one needs to have some idea of the scale of size of the asperity
which is considered most important and then fit the sample interval to encompass it adequately
in the data.

Ungquestionably the most important result of this paper is the demonstration that by estimating just
two points on the autocorrelation function and knowing the r.m.s. of the surface profile one is
able to predict all the tribological parameters that could be measured from a profile using the
same interval; the need to estimate them directly is therefore removed. The problems of measuring
many parameters is therefore reduced to evaluating two points on an autocorrelation function
and inserting them into the relevant formulae in §2. The only qualifications to this are that the
surfaces are nominally gaussian and that the sampling is not too large significantly to reduce the
accuracy of the three-point method. This latter qualification is only a safeguard, the technique
will always give the sameresults as the direct use of three-point analysis on the profile; the question
is whether or not the three-point analysis is sufficiently accurate. Since most surfaces on critical
components in tribological situations involve finishing processes, they are likely to be gaussian in
character. In wear situations, however, this method is likely to apply only to initial conditions but
it is often the original finish which dominates subsequent behaviour (Whitehouse 19771). In other
functional situations such as lubrication, contact, electrical, thermal and optical behaviour the
use of the two values of the autocorrelation function appear to be generally applicable because
the surface is not severely changed during the functional operation. In fact provided the skew of
the distribution is within about #+ 1, results from non-gaussian surfaces still agree with the theory.

The only restriction on the type of autocorrelation function for which this technique will be
satisfactory is that 2p% — 1 < p, < 1; this can only be violated for a purely deterministic waveform
such as a cosinusoid and consequently is not a practical restriction.

Measurement of the autocorrelation function in two places is straightforward nowadays with
the availability of digital correlators. Itis also possible to estimate the autocorrelation function to
a good degree of accuracy by hand from the profile graph; the two points could be evaluated in a
few minutes (Whitehouse 1976) so that pilot estimations of the tribological parameters could be
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obtained very simply without the use of expensive equipment. Obviously in cases which involve,
for example, the control of the manufacturing process (where surfaces are often severely non-
gaussian) more refined apparatus will always be needed.

One considerable advantage of specifying a surface in terms of the three correlation coefficients
p(0) = r.m.s.2, p(k) and p(2#) is that they are additive from surface to surface. This means that the
properties of the gap can be found by first adding the coefficients of the mating surfaces. Thus if
0% is the r.m.s. value of surface A and p, (%), pA(2h) are its coefficients and similarly for surface B.
Then the gap coefficients are

ol = o} +0%,
pg(h) = (o pa(h) + ok pu(h) /o (5.4)
Po(2H) = (0% pa(2H) + 0% p(2R)) /0.

Tribological gap properties such as given in §2 are obtained by inserting the gap correlation
coefficients into the relevant formulae.

Use of density of peaks and zero crossings instead of correlation coefficients is not an attractive
alternative because they are much more sensitive to instrumental error and because they are not
simply additive. Thus using the nomenclature

1D, . 1 D
Hp_nJE)’ D_21L'A/.D2

we get for comparison o? = o} +0},
Hy = (o} HR +0% Hﬁ)/aé)%,
o H: DA + o} HE D%\
o} H} + o5 HR :

(5.5)

D, =
From (5.5) it is clear that the errors are cumulative and because of instrumental problems, such
as frequency response, are more likely to occur.

To extend the theory to cover five-point analysis is possible but more difficult and hardly
justifiable. The next step is the three-dimensional aspect when the surfaces are, and are not,
isotropic.

Summarizing, this paper has been an attempt to bridge the gap between the purely random
process analysis of surfaces and their measurement. In the past tribological parameters have only
been related theoretically to the autocorrelation function behaviour at the origin (or the
moments of the spectrum which are notoriously difficult to measure) (Nayak 1973) whereas
in this paper the theory has been taken a step further to enable the practical evaluation of tribo-
logical parameters in terms of two points on the measured autocorrelation function. It should
therefore help researchers to measure parameters without much involvement in digital analysis
or random process theory.

We wish to thank the Directors of Rank Taylor Hobson for permission to publish and for their
continued support for work of this kind.
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